La gestion du problème de transport est parmi les préoccupations majeurs des entreprises.La recherche opérationnelle permet une modélisation de ces problèmes en utilisant plusieurs méthodes. On peut les résoudre comme d'habitude par un simplexe mais on peut aussi les résoudre plus simplement et plus efficacement par l'utilisation des techniques beaucoup plus légères.
[...] (Coût de transport de cette solution= 6714DH). Amélioration de la solution de base : Pour chaque case présentant une valeur nulle, on calcule le coût marginal engendré par le déplacement d'unité des cases affectées voisines vers celle- ci. Par exemple si on veut affecter une unité de FES à Oujda, le respect des contraintes nous oblige à enlever une unité de la case, casa-oujda, à enlever une unité de la case FES- TAOUNATE et à ajouter une unité à la case Casa- TAOUNATE. [...]
[...] Modélisation d'un problème de transport PLAN INTRODUCTION Partie 1 : Modélisation d'un problème de transport I. Formulation primale Cas général Exemple Résolution primale : Algorithme du stepping-stone II. Formulation duale Cas général Exemple Relation primale-duale Résolution : Algorithme primal-dual III. Cas particuliers Inégalité entre l'offre et la demande Problème de dégénérescence Partie 2 : Problème d'affectation Partie 2 : Problème de flot Partie 4 : Problème de flot avec minimisation des coûts CONCLUSION Introduction C'est en 1941 que Frank.Hitchckcock a formulé pour la première fois le problème de transport qui a minimisé le coût de transport total d'un plan d'expédition. [...]
[...] L'amélioration de la solution de base présentée dans le tableau a se fait par la même démarche suivit dans la première méthode. On continu par la même manière jusqu'à ce qu'on trouve la solution optimale, cette solution est atteinte lorsque tous les coûts marginaux des trajets inutilisés seront négatifs ou nuls. Certes, cette méthode ou la première méthode est facile a utilisé et ils permettent de trouver une solution optimale, mais il y'a certains cas particuliers où il est impossible d'arriver à une solution optimale. [...]
[...] Il existe une méthode de résolution plus simple, non matricielle. Si les coûts sont entiers, la solution est également entière, donc si on peut formuler un problème sous forme de transport, la solution en entier est également facilement calculable. BIBLIOGRAPHIE Mohamed Zouhir, Les éléments de la recherche opérationnelle édition 2004. Roseaux ; exercices et problèmes résolus de recherche opérationnelle, T1 : Leurs usages, leurs algorithmes. Maison paris, New York Barcelone. Exercice et problème de recherche opérationnelle, G.Desbazeille. Recherche opérationnel de gestion, P. [...]
[...] Il existe cependant une am'elioration de cet algorithme propos'ee par Edmonds et Karp et bas'ee sur une technique de modification des cou”ts permettant de les rendre tous positifs en conservant cependant la m”eme hi'erarchie de chemin sur le graphe d''ecart ; dans cette situation l'algorithme de Dijkstra peut ”etre utilis'e. Conclusion La modélisation d'un problème de transport est une méthode qui permet d'optimiser certaines décisions relatives à la planification de la production. Grace à l'informatique et en particulier à la micro- informatique, cet exercice est aujourd'hui grandement simplifié. Mais comme cette méthode fait partie de la programmation linéaire, on doit s'assurer, avant de l'appliquer, que la relation entre toutes les variables utilisées est bien linéaire. [...]
Source aux normes APA
Pour votre bibliographieLecture en ligne
avec notre liseuse dédiée !Contenu vérifié
par notre comité de lecture